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The character of critical behavior in physical systems depends on the range of
interactions. In the limit of infinite range of the interactions, systems will exhibit
mean-field critical behavior, i.e., critical behavior not affected by fluctuations of
the order parameter. If the interaction range is finite, the critical behavior
asymptotically close to the critical point is determined by fluctuations and the
actual critical behavior depends on the particular universality class. A variety of
systems, including fluids and anisotropic ferromagnets, belongs to the three-
dimensional Ising universality class. Recent numerical studies of Ising models
with different interaction ranges have revealed a spectacular crossover between
the asymptotic fluctuation-induced critical behavior and mean-field-type critical
behavior. In this work, we compare these numerical results with a crossover
Landau model based on renormalization-group matching. For this purpose we
consider an application of the crossover Landau model to the three-dimensional
Ising model without fitting to any adjustable parameters. The crossover behav-
ior of the critical susceptibility and of the order parameter is analyzed over a
broad range (ten orders) of the scaled distance to the critical temperature. The
dependence of the coupling constant on the interaction range, governing the
crossover critical behavior, is discussed.

KEY WORDS: Critical phenomena; crossover Landau model; Ising model;
order parameter; susceptibility.



1. INTRODUCTION

In systems with a critical-point phase transition the asymptotic critical
behavior of thermodynamic properties can be characterized by scaling laws
with universal critical exponents and universal scaling functions. (1) In this
issue of the Journal of Statistical Physics, dedicated to M. E. Fisher, it is
interesting to recall some of the discussions at a conference on critical
phenomena held in Washington, DC in 1965. (2) At that conference, Fisher
reviewed the definitions of the proposed asymptotic critical power laws,
both for the thermodynamic properties (3) and for the correlation functions
of the order parameter. (4) Commenting on the presentations of Fisher,
Debye (5) made the following remark: ‘‘I would like that the theoretical
people tell me when I am so and so far away from the critical point, then
my curve should look so and so,’’ to which Fisher responded: (6) ‘‘What
Dr. Debye said is correct, namely that when one is talking about some
deviations one must attach to it a magnitude and a range of temperatures
where it is to be observed, which can be different for one phenomenon
compared to another. When these ranges differ from one system to another
for the same phenomenon, we have a real challenge.’’ It is the purpose of
the present paper to further elucidate the issue of nonasymptotic critical
behavior.

The asymptotic fluctuation-induced critical scaling laws are valid suf-
ficiently close to the critical point, where the correlation length t of the
long-range critical fluctuations will be much larger than the range of the
intermolecular interaction. Away from the critical point, the correlation
length t decreases and sufficiently far away from the critical point t will
become of the order of the intermolecular interaction range and the effects
of any critical fluctuations become negligible.

The actual critical behavior will depend strongly on the range of the
microscopic interactions. As the interaction range becomes larger and
larger, the critical fluctuations become more and more suppressed and mean-
field theory will become applicable up to temperatures closer and closer to
the critical temperature. In the limit of infinite interaction range one
recovers classical, i.e., mean-field asymptotic critical behavior. Hence, as
the interaction range varies, the system will exhibit a crossover from fluc-
tuation-induced critical behavior to mean-field critical behavior.

Recently, Luijten and coworkers have reported numerical studies of
the susceptibility and the order parameter of both two-dimensional (7–9) and
three-dimensional (10–12) Ising models with different interaction ranges,
showing crossover from fluctuation-induced to mean-field critical behavior.
On the other hand, during the past two decades theoretical equations for
dealing with crossover from fluctuation-induced to mean-field critical

592 Kim et al.



behavior have been developed by several groups of investigators. (13–29)

A comparison between some of these theoretical approaches (16–21, 24) has
been presented by Anisimov et al. (22) Here we consider a crossover Landau
model that has been used to represent experimental thermodynamic-property
data in the critical region of fluids, which are expected to belong to the
three-dimensional Ising universality class. (20, 21, 30, 31) The crossover Landau
model contains some system-dependent parameters related to the coeffi-
cients in a Landau–Ginzburg Hamiltonian. (22) Since these system-dependent
coefficients are not known a priori for fluids, they are used as adjustable
parameters in fits to experimental data. However, in the case of the Ising
models studied numerically by Luijten and Binder (10, 11) we have a priori
information concerning the system-dependent constants. Hence, it has
become possible to evaluate the crossover Landau model for Ising models
without using adjustable parameters and to make a comparison with the
numerical data obtained by Luijten and Binder for three-dimensional Ising
models.

2. CROSSOVER LANDAU MODEL

A procedure for constructing an expression for the Helmholtz-energy
density for fluids in the critical region, that incorporates crossover from
Ising-like critical behavior to classical behavior was originally proposed by
Chen and coworkers. (19–21) The procedure, based on a theoretical analysis of
Nicoll and coworkers, (13–15) represents an approximate solution of the non-
linear renormalization-group equations and involves a transformation of a
classical (Landau) expansion. Two crossover Landau models, a two-term
and a six-term crossover Landau model have been considered depending on
the number of terms retained in the classical Landau expansion as further
reviewed by Anisimov et al. (22) Explicit expressions for the amplitudes of
the critical power laws incorporated in the crossover Landau models have
been evaluated by Tang et al. (32) and, more recently, by Agayan et al. (33)

Here we consider the two-term crossover model which deals with the
crossover from asymptotic Ising-like critical behavior to asymptotic mean-
field critical behavior. (22)

In the crossover Landau model one starts with an asymptotic Landau
expansion of the critical part DA of the classical local Helmholtz free-
energy density A: (22)

DA=1
2 a0yf2+1

4! u0f4+1
2 c0(Nf)2, (2.1)

where y=(T − Tc)/T is the reduced difference between the actual tempera-
ture T and the critical temperature Tc, f=f(r) is a spatially fluctuating
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order parameter, while a0, u0 and c0 are system-dependent coefficients. For
the Ising model the order parameter f corresponds to the magnetization
density. It is convenient to transform the variables and coefficients, such
that (33)

M=crf, t=cty, Ñ=(v1/3
0 /p) N, (2.2)

a0=c2
rct, u0=ugūLc4

r, c0=c2
rv2/3

0 /p2, (2.3)

where v0 is the volume of an elementary lattice cell, ug 4 0.472 is the uni-
versal coupling constant at the Ising fixed point, (32, 34) ū is the scaled j4

coupling constant, L is a dimensionless cut-off wave number, while ct and
cr are amplitudes of the rescaled temperature scaling field and of the
rescaled magnetization density, respectively. Expression (2.1) for DA can
then be written as

DA=1
2 tM2+1

4! ugūLM4+1
2 (ÑM)2. (2.4)

Upon applying a transformation derived from renormalization-group
matching (20, 21) one obtains a renormalized critical part of the Helmholtz-
energy density:

DAs=
1
2

tM2TD+
ūugL

4!
M4D2U−

1
2

t2K, (2.5)

where, in practice, the following approximate expressions for the rescaling
functions T, D, U, and K are used:

T=Y (2n − 1)/Ds, (2.6)

D=Y−gn/Ds, (2.7)

U=Yn/Ds, (2.8)

and

K=
n

aūL
(Y−a/Ds − 1). (2.9)

Here n 4 0.630, g 4 0.033, and a 4 0.110 are the critical exponents asso-
ciated with the correlation length, the spatial dependence of the order
parameter at the critical point and the heat capacity, such that dn=2 − a,
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where d=3 is the dimensionality, (35–37) while Ds 4 0.51 is a correction-to-
scaling exponent. (35, 38) In the asymptotic crossover theory, the crossover
function Y is to be evaluated from the equation (22)

1 − (1 − ū) Y=1 ūL

o
2 Yn/Ds, (2.10)

where the parameter o plays the role of the distance from the critical point
and it is given by

o2=tT+1
2 ūugLM2DU. (2.11)

In zero ordering field, M=0, the isothermal susceptibility q [q−1=
(“

2A/“f2)y= (“
2A/“M2)t c−2

r ] above Tc has an expansion of the form

q+=C+
0 t−c(1+C+

1 tDs+ · · · ), (2.12)

and along the line of spontaneous magnetization (coexistence curve) M=
Mcxc, below Tc (y < 0):

q−=C−
0 |t|−c (1+C−

1 |t|Ds+ · · · ). (2.13)

The order parameter fcxc along the ‘‘coexistence curve’’ below the critical
temperature (y < 0) has the expansion

fcxc=c−1
r Mcxc= ± B0 |t|b (1+B1 |t|Ds+ · · · ). (2.14)

In the above equations, c=(2 − g) n 4 1.239 and b=(dn − c)/2 4 0.326 are
again universal critical exponents, (35–37) while C ±

0 , C ±
1 , B0 and B1 are system-

dependent amplitudes. These system-dependent amplitudes are related to
ūL and the coefficients in the transformations (2.2) and (2.3) and they are
given by the following equations. (32, 33, 39) For the leading amplitudes one
has

C+
0 =g+ 1 `ct

ūL
22(1 − c)

a−1
0 , (2.15)

C−
0 =g− 1 `ct

ūL
22(1 − c)

a−1
0 , (2.16)

B0=b 1 `ct

ūL
22(b − 1/2)

(a0/u0)1/2, (2.17)
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and for the correction-to-scaling amplitudes

C+
1 =g+

1
1 `ct

ūL
22Ds

(1 − ū), (2.18)

B1=b1
1 `ct

ūL
22Ds

(1 − ū). (2.19)

The coefficients g ±, b, g+
1 , and b1 in the above equation have been

evaluated by Tang et al. (32) 4 They depend on the critical exponents and the

4 In ref. 32 Tang et al. actually considered a variety of approximants for the rescaling func-
tions T, D, U, and K. The crossover Landau model considered here corresponds to the one
designated by Tang et al. as crossover model II.

coupling constant ug and are therefore again universal constants with the
values: (33, 39)

g+ 4 0.871, g− 4 0.174, b 4 2.05, (2.20)

and

g+
1 4 0.610, b1 4 0.531. (2.21)

The theoretical expression for the amplitude C−
1 in Eq. (2.13) has not yet

been evaluated. The values implied by the crossover Landau model for the
corresponding universal amplitude ratios are

C+
0 /C−

0 =5.0, B1/C+
1 =0.87, (2.22)

to be compared with the values C+
0 /C−

0 =4.95 ± 0.15 and B1/C+
1 =

0.90 ± 0.21. (35) A phenomenological reformulation of the two-term Landau
model in terms of a parametric representation yielding slightly more
accurate values for some universal amplitude ratios has been presented by
Agayan et al. (33)

We define a crossover temperature y× as

y× =(C+
1 )−1/Ds=(g+

1 )−1/Ds
(ūL)2

ct
(1 − ū)−1/Ds, (2.23)

or, equivalently,

t× =(g+
1 )−1/Ds (ūL)2 (1 − ū)−1/Ds. (2.24)
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In the infinite-cutoff approximation (L Q ., ū Q 0, while ūL remains
finite), y× becomes the so-called Ginzburg number. (22, 31) In general, the
crossover behavior is governed by two system-dependent parameters,
namely, the cutoff L and the coupling constant ū. However, for the Ising
model L is a constant equal to unity independent of the range of interac-
tion and only the coupling constant ū governs the crossover behavior. One
can also show that in the asymptotic crossover Landau model the appro-
priately scaled susceptibilities, q̃ ± — q ±yc

× /C ±
0 , and the scaled order

parameter, f̃ — fy−b
× /B0 become universal functions of a single argument

y/y× =t/t× . (22)

After some algebra, one can obtain the following universal expression
for the crossover behavior of the scaled susceptibility q̃+ above Tc in zero
ordering field as a function of y/y× :

q̃+=
(g+

1 )c − 1

g+
1 y

y×

2−1

Ỹ (1 − c)/Ds 51+
ugn

2Ds

1 2Ỹ
1 − Ỹ

+
1
Ds

2−16−1

, (2.25)

where the rescaled crossover function Ỹ can be obtained by solving

1 − Ỹ=(g+
1 y/y× )−1/2 Ỹ (1 − n)/2Ds. (2.26)

The scaled susceptibility q̃− and the scaled order parameter f̃ below Tc are
to be obtained by imposing the condition (“A/“M)t=0 for the phase
boundary and solving Eqs. (2.5)–(2.9) numerically.

We note that the crossover Landau model as specified above is an
asymptotic version of the crossover Landau model (22, 31) valid for L/o ± 1.
This asymptotic version appears to be adequate for the temperature ranges
covered by the numerical studies of Luijten and Binder.

The crossover Landau model has been derived from the renormaliza-
tion-group theory of critical phenomena by using the technique of renor-
malization-group matching. (13, 40, 41) In this approach one considers the rela-
tion between DA at a given cutoff L and DA at another cutoff Le−l, where l
is a variable. One then tries to determine a special ‘‘matching-point’’ value
l=lg for which DA reduces to the known classical expression in the
absence of fluctuations. One limitation is that the value of lg that satisfies
the matching condition for DA will not exactly satisfy the matching condi-
tion for its derivatives like q. Secondly, for practical reasons lg has been
selected to satisfy the matching condition M=0. (20, 21) A comparison with
the numerical data for the three-dimensional Ising model will enable us to
make an assessment of the quality of these approximations.
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3. APPLICATION TO THE THREE-DIMENSIONAL ISING MODEL

In the Monte Carlo simulations a three-dimensional equivalent-
neighbor model was adopted for which the Hamiltonian H is given by (11)

H/kBT=−C
OijP

K(ri − rj) sisj, (3.1)

where kB is Boltzmann’s constant, si= ± 1, the sum runs over all spin
pairs, and the spin-spin coupling is defined as K(r)=J > 0 for |r| [ Rm

and K(r)=0 for |r| > Rm. However, in a renormalization-group analysis, (11)

various critical properties have been obtained as functions of an effective
interaction range R defined by

R2 — C
j ] i

(ri − rj)2 Kij/ C
j ] i

Kij

=
1
q

C
j ] i

|ri − rj |2 with |ri − rj | [ Rm, (3.2)

where Kij stands for K(ri − rj) while q is the coordination number. In the
limit of an infinite interaction range R Q ., R is related to Rm by R2=
3R2

m/5, while R=Rm for Rm=1. The dependence of the effective inter-
action range R on Rm is shown in Fig. 1. Also shown is an approximate
relation (42)

R2=3
5 R2

m(1+2
3 R−2

m ) (3.3)

encompassing the known behavior in the limits R Q . and R=1.

1 10 100
Rm

2

1

10

100

R2

Fig. 1. Square of the effective interaction range R as a function of R2
m. The symbols indicate

values calculated by Luijten. (11) The solid curve represents the approximant given by
Eq. (3.3). The dotted line represents the asymptotic relation R2=3R2

m/5 for large R.
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In order to apply the theoretical crossover model to the three-dimen-
sional Ising model we need to specify the system-dependent constants. From
the mean-field theory of the Ising model one obtains for the coefficients in
the classical expansion (2.1) (43)

a0=1, u0=2. (3.4)

The physical cutoff wave number for the Ising model is p/a, so that

L=1. (3.5)

In a previous paper, (42) L of the three-dimensional Ising model was taken to
be p. However, we have subsequently realized that the spatial derivatives in
the gradient term are already scaled by p/a.

A renormalization-group analysis of Eq. (3.1) has shown that ū 3 R−4

for large R. (7, 11) It then follows from Eq. (2.3) that ct 3 R−2 and cr 3 R and
we write

ū=
ū0

R4 , ct=
ct0

R2 , cr=c−1/2
t =Rc−1/2

t0 . (3.6)

In a previous attempt to compare the crossover model with the numerical
results for the three-dimensional Ising model, ū0 and ct0 were treated as
adjustable constants. (42) In the present paper we shall adopt a priori esti-
mates for ū0 and ct0. It has been suggested by Luijten (11) that ū0, and con-
sequently ct0, may actually exhibit a remaining weak dependence on R for
small R. From Eqs. (2.3), (3.4), and (3.5) we note that the coefficients ū0(R)
and ct0(R) are related by

c2
t0(R)=1

2 ugū0(R). (3.7)

The values of the coefficients ū0 and ct0 can readily be determined for
large R. For this purpose we note that the amplitude t̄+

0 of the power
law t̄=t̄+

0 y−1/2 for the classical correlation length t̄ is given by
t̄+

0 =(c0/a0)1/2. (22) Starting from an expression given by Fisher and
Burford (44) and extending it to arbitrary interaction ranges, one finds that
t̄+

0 becomes equal to R/`2d , so that c0 becomes equal to R2/2d for
large R. Using Eqs. (2.3), (3.4), and (3.6) we thus obtain for large R:

ct0(.)=6/p2 4 0.608, ū0(.)=
2
ug c2

t0(.) 4 1.566. (3.8)
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1.00

10.0

Γ1
+

Fig. 2. Amplitude C+
1 of the correction-to-scaling contribution in the expansion (2.12) for

the susceptibility. The solid curve represents values predicted from the crossover Landau model
with ū=ū0(.) R−4 and the dotted curve with ū=ū0(.) R−4(1+0.9R−2). The circles indicate
numerical estimates deduced from finite-size effects obtained by Luijten. (11) The dashed line
represents the asymptotic linear dependence of C+

1 on R3.

In the present paper we shall use two approximations for the coupling
constant ū of the three-dimensional Ising model. One estimate is obtained
by assuming that ū remains proportional to R−4 for all values of R:

ū=
ū0(.)

R4 . (3.9)

Using Eq. (3.9) in conjunction with Eqs. (3.6)–(3.8) we can then predict
from the crossover Landau model the amplitude C+

1 which is related to the
crossover temperature y× through Eq. (2.23). The resulting values for C+

1

as a function of R3 are represented by the solid curve in Fig. 2. We note
that, since Ds 4 1/2, C+

1 will approximately vary as R3 for large R.
A second estimate for C+

1 is obtained from numerical values calculated
by Luijten for the amplitude b1(R) of the correction-to-scaling contribution
to the finite size effects. (11) For large values of R where ū approaches zero,
b1(R) becomes proportional to C+

1 (R) Rac/Ds so that we may write

C+
1 (R)=b0(R) b1(R) R−ac/Ds, (3.10)

where b0(R) is a coefficient with a finite limiting value

b0(.)=−2.6 ± 0.5. (3.11)

Values deduced for C+
1 from the numerical data obtained by Luijten for

b1(R), when the coefficient b0(R) in Eq. (3.10) is approximated by b0(.)
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for all R, are indicated by the circles in Fig. 2. These values can be
reproduced from Eq. (2.23) for the crossover Landau model if we adopt the
following approximation for ū:

ū=
ū0(.)

R4 (1+0.9R−2), (3.12)

as shown in the dotted curve in Fig. 2.
Equations (3.9) and (3.12) are the two approximations that will be

considered in applying the crossover Landau model to the Ising lattice. As
we shall see, the predicted critical crossover behavior of the susceptibility is
not very sensitive to these different choices for the coupling constant ū for
most values of R.

4. RESULTS OF ANALYSIS

In Fig. 3 we present a plot of the scaled susceptibility q̃=q+yc
× /C+

0

above Tc as a function of y/y× . The solid curve represents the values pre-
dicted from Eq. (2.26) for the crossover Landau model with ū=ū0(.) R−4

in accordance with Eq. (3.9). The symbols indicate the numerical values
obtained by Luijten and Binder. (10, 11) A sensitive test of the crossover
behavior is obtained by considering an effective susceptibility exponent c+

eff

defined by (45)

c+
eff=−d log q̃/d log y (y > 0). (4.1)

10
-- 6

10
-- 4

10
-- 2

10
0

10
2

10
4

10
6

τ/τX

10
-- 6

10
-- 4

10
-- 2

10
0

10
2

10
4

10
6

χ+τX
γ

Γ+
0

Fig. 3. Scaled susceptibility q̃+=q+yc
× C+

0 as a function of y/y× . The symbols indicate
numerical values from the Monte Carlo simulations. (10, 11) The curve represents values
calculated from the crossover Landau model with ū=ū0(.) R−4.
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0.95
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1.05

1.10
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γ
eff
+

Fig. 4. Effective susceptibility exponent c+
eff as a function of y/y× . The symbols indicate

numerical values deduced by numerical differentiation of the results from the Monte Carlo
simulations. (11) The solid curve represents values calculated from the crossover Landau model
with ū=ū0(.) R−4 for Rm \ 2. The dashed curve represents c+

eff for Rm=1 corresponding to
ū > 1.

Figure 4 shows the effective exponent c+
eff as a function of y/y× . The

symbols indicate values deduced by numerical differentiation of the sus-
ceptibilities obtained by Luijten. (11) The solid curve represents the effective
exponent values predicted from the crossover model. Note that this expo-
nent is related to the third derivative of the Helmholtz-energy density DÃ.
In Fig. 5 we show again c+

eff as a function of y/y× but now with ū=
ū0(.) R−4(1+0.9R−2) in accordance with Eq. (3.12). We remark that the
theoretical prediction has a possible inaccuracy at the percentage level,
since the values adopted for the various universal constants have a finite
accuracy. In addition, we have only limited theoretical information for
the values of ū for small R. Based on the currently available theoretical
information we conclude from Figs. 4 and 5 that the crossover Landau
model yields a satisfactory representation of the crossover behavior of the
susceptibility above Tc for the three-dimensional Ising model with varying
interaction ranges.

As mentioned in Section 2, the crossover Landau model has been
derived from the renormalization-group theory of critical phenomena by
renormalization-group matching, but the match-point condition actually
adopted corresponds to M=0. (20) This is correct for the susceptibility above
Tc at M=0, but represents an approximation below Tc where Mcxc ] 0.
Hence, we expect the crossover Landau model to be less accurate for a
description of the critical crossover behavior of the susceptibility and of the
order parameter below Tc.

In Fig. 6 we show the scaled order parameter f̃=fy−b
× /B0 and in

Fig. 7 the scaled susceptibility q̃−=q−yc
× /C−

0 as a function of − y/y× . The
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Fig. 5. Effective susceptibility exponent c+
eff as a function of y/y× . The symbols indicate

values deduced by numerical differentiation of the results from the Monte Carlo simulations
as in Fig. 4. The solid curve represents values calculated from the crossover Landau model
with ū=ū0(.) R−4(1+0.9R−2) for Rm \ 2. The dashed curve represents c+

eff for Rm=1 corre-
sponding to ū > 1.

solid curves represent again the values predicted from the crossover
Landau model and the symbols indicate again the numerical data obtained
by Luijten and Binder. (10) In both cases the asymptotic Eq. (3.9) was
adopted for ū. While the actual differences with the numerical values for f

and q− are small and probably within the accuracy these properties can be
measured experimentally for real systems, the deviations are systematic.
This becomes evident when one takes the logarithmic derivative so as to
obtain the effective order-parameter exponent

beff=d log f/d log |y|, (y < 0) (4.2)

10
-- 6

10
-- 4

10
-- 2

10
0

10
2

10
4

10
6

 -- τ/τX

10
-- 2

10
-- 1

10
0

10
1

10
2

10
3

φτX
−β

B0

Fig. 6. Scaled order-parameter f̃=fy−b
× /B0 as a function of − y/y× . The symbols indicate

numerical values from the Monte Carlo simulations. (10, 11) The curve represents values
calculated from the crossover Landau model with ū=ū0(.) R−4.
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Fig. 7. Scaled susceptibility q̃−=q−yc
× /C−

0 as a function of − y/y× . The symbols indicate
numerical values from the Monte Carlo simulations. (10, 11) The curve represents values
calculated from the crossover model with ū=ū0(.) R−4.

shown in Fig. 8 and the effective susceptibility exponent c−
eff

c−
eff=−d log q/d log |y|, (y < 0) (4.3)

shown in Fig. 9. The effective exponents predicted by the crossover Landau
model as a function of y/y× have the correct shape but the location of the
crossover temperature y=y× is shifted from that implied by the numerical
data. This shift amounts to about 1/2 of a decade for beff and 2/3 of a
decade for c−

eff. The shift is larger for c−
eff than for beff, since c−

eff is related to
the third derivative and beff is related to the second derivative of the cross-
over function deduced for DA by renormalization-group matching.
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Fig. 8. Effective order-parameter exponent beff as a function of − y/y× . The symbols indi-
cate values deduced by numerical differentiation of the results from the Monte Carlo simula-
tions. (11) The solid curve represents values calculated from the crossover Landau model with
ū=ū0(.) R−4 for Rm \ 2. The dashed curve represents beff for Rm=1 corresponding to ū > 1.
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Fig. 9. Effective susceptibility exponent c−
eff as a function of − y/y× . The symbols indicate

values deduced by numerical differentiation of the results from the Monte Carlo simulations. (11)

The solid curve represents values calculated from the crossover Landau model with ū=ū0(.) R−4

for Rm \ 2. The dashed curve represents c−
eff for Rm=1 corresponding to ū > 1.

Crossover Landau models with improved approximants for the rescal-
ing functions T, D, U, and K have been considered by Tang et al., (32) but
they never have been used for practical use because of increased complexity.

The solid curves in Figs. 4, 5, 8, and 9 actually represent the effective
exponents for Rm \ 2 where ū < 1. For Rm=R=1 the leading amplitudes
C ±

0 and B0 have been determined by Liu and Fisher (35) from a careful
analysis of series expansions. The value of C+

0 =1.095 corresponding to
c=1.239 implies ū=1.17 as follows from Eq. (2.15). For ū > 1, the
correction-to-scaling amplitudes C+

1 and B1 become negative in agreement
with an earlier observation of Liu and Fisher. (46) A comparison of the
amplitudes calculated from the crossover model for ū=1.17 with the
amplitudes deduced by Liu and Fisher (35) from series expansions is pre-
sented in Table I. For ū > 1, the asymptotic value of the effective suscepti-
bility exponents c+

eff and c−
eff is approached from above and that of the

effective order-parameter exponent beff from below. (33, 47) The dependence
of the effective exponents on y/y× with y× — |C+

1 |−1/Ds for the case R=1,
corresponding to ū=1.17, is represented by the dashed curves in Figs. 4, 5,
8 and 9 in the temperature range covered by the numerical simulations.

From Fig. 9 we note that the numerical data as well as the crossover
Landau model show that c−

eff passes through a minimum as a function of
y/y× before reaching its mean-field value unity, (see ref. 48). An interesting
question, raised earlier by Fisher, (49) is whether also c+

eff can assume values
smaller than unity. Within the accuracy of our analysis, we do not find any
evidence that the effective susceptibility exponent above Tc can assume
values smaller than unity, as was already discussed in ref. 10.
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Table I. The Critical Amplitudes of the Susceptibilities Above and Below Tc and of

the Order Parameter from the Crossover Two-Term Landau Model (CLM) Using

ū=1.17, and from Series Expansions (Ref. 35) for R=1

C+
0 C−

0 B0 C+
1 B1 C+

0 /C−
0 B1/C+

1

CLM 1.095 0.219 1.71 − 0.0636 − 0.055 5.0 0.87
Series exp. 1.095 0.220 1.66 — — 4.98 —

5. DISCUSSION

In the present paper we have applied a crossover Landau model, pre-
viously derived for the representation of thermodynamic properties of
fluids near the critical point to predict the critical crossover behavior of the
susceptibility above Tc and of the order parameter and susceptibility below
Tc for the three-dimensional Ising model with various interaction ranges.
A comparison with numerical data, recently obtained by Luijten and
Binder, (10, 11) demonstrates that the crossover Landau model yields a good
representation of the crossover behavior of the susceptibility above Tc.
Below Tc there are some systematic differences from the numerical data
which are small for f and q− themselves, but which become more pro-
nounced when one considers the corresponding effective exponents. In
applications of the crossover model to real fluids, residual deviations are
partially accounted for by using ū and L, as well as the coefficients a0 and
u0 in the classical expansion (2.1) of the Helmholtz-energy density, or,
equivalently, ct and cr (cf. Eq. (2.3)) as adjustable coefficients. (42)

The analysis presented in this paper is based on an asymptotic version
of the crossover Landau model which deals with the crossover from fluc-
tuation-induced critical behavior to asymptotic mean-field critical behavior.
For some other applications one needs to consider a more general version
of the crossover Landau model that is obtained when the ratio L/o in
Eq. (2.10) is replaced by (1+L2/o2)1/2. (22) This generalization was origi-
nally introduced to account for crossover to nonasymptotic mean-field
behavior in simple fluids. (21) Subsequently, it has become evident that this
generalization becomes essential in the case of complex fluids, when the
crossover to mean-field behavior does not result from long-range interac-
tions, but from a decrease of the effective cutoff wave number L. In that
case L−1 plays the role of a correlation length associated with an additional
order parameter. Then the mean-field limit corresponds to mean-field
tricriticality, when both t and L−1 diverge. (50, 51)
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